skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turk-Kubo, Kendra_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Exploring the diversity of diazotrophs is key to understanding their role in supplying fixed nitrogen that supports marine productivity. A nested PCR assay using the universal primer set nifH1-nifH4, which targets the nitrogenase (nifH) gene, is a widely used approach for studying marine diazotrophs by amplicon sequencing. Metagenomics, direct sequencing of DNA without PCR, has provided complementary views of the diversity of marine diazotrophs. A significant fraction of the metagenome-derived nifH sequences (e.g. Planctomycete- and Proteobacteria-affiliated) were reported to have nucleotide mismatches with the nifH1-nifH4 primers, leading to the suggestion that nifH amplicon sequencing does not detect specific diazotrophic taxa and underrepresents diazotroph diversity. Here, we report that these mismatches are mostly located in a single-base at the 5′-end of the nifH4 primer, which does not impact detection of the nifH genes. This is demonstrated by the presence of nifH genes that contain the nucleotide mismatches in a recent compilation of global ocean nifH amplicon datasets, with high relative abundances detected in a variety of samples. While the metagenome- and metatranscriptome-derived nifH genes accounted for 4.4% of the total amplicon sequence variants from the global ocean nifH amplicon database, the corresponding amplicon sequence variants can have high relative abundances (accounting for 47% of the reads in the database). These analyses underscore that nifH amplicon sequencing using the nifH1-nifH4 primers is an important tool for studying diversity of marine diazotrophs, particularly as a complement to metagenomics which can provide taxonomic and metabolic information for some dominant groups. 
    more » « less
  2. Abstract Dinitrogen (N₂) fixation by diazotrophs supports ocean productivity. Diazotrophs include photoautotrophic cyanobacteria, non-cyanobacterial diazotrophs (NCDs), and the recently discovered N2-fixing haptophyte. While NCDs are ubiquitous in the ocean, their ecology and metabolism remain largely unknown. Unlike cyanobacterial diazotrophs and the haptophyte, NCDs are primarily heterotrophic and depend on dissolved organic matter (DOM) for carbon and energy. However, conventional DOM amendment incubations do not allow discerning how different diazotrophs use DOM molecules, limiting our knowledge on DOM–diazotroph interactions. To identify diazotrophs using DOM, we amended North Pacific microbial communities with 13C-labeled DOM from phytoplankton cultures that was molecularly characterized, revealing the dominance of nitrogen-rich compounds. After DOM additions, we observed a community shift from cyanobacterial diazotrophs like Crocosphaera and Trichodesmium to NCDs at stations where the N2-fixing haptophyte abundance was relatively low. Through DNA stable isotope probing and gene sequencing, we identified diverse diazotrophs capable of taking up DOM. Our findings highlight unexpected DOM uptake by the haptophyte’s nitroplast, changes in community structure, and previously unrecognized osmotrophic behavior in NCDs, shaped by local biogeochemical conditions. 
    more » « less
  3. Abstract Marine N2-fixing cyanobacteria, including the unicellular genus Crocosphaera, are considered keystone species in marine food webs. Crocosphaera are globally distributed and provide new sources of nitrogen and carbon, which fuel oligotrophic microbial communities and upper trophic levels. Despite their ecosystem importance, only one pelagic, oligotrophic, phycoerythrin-rich species, Crocosphaera watsonii, has ever been identified and characterized as widespread. Herein, we present a new species, named Crocosphaera waterburyi, enriched from the North Pacific Ocean. C. waterburyi was found to be phenotypically and genotypically distinct from C. watsonii, active in situ, distributed globally, and preferred warmer temperatures in culture and the ocean. Additionally, C. waterburyi was detectable in 150- and 4000-meter sediment export traps, had a relatively larger biovolume than C. watsonii, and appeared to aggregate in the environment and laboratory culture. Therefore, it represents an additional, previously unknown link between atmospheric CO2 and N2 gas and deep ocean carbon and nitrogen export and sequestration. 
    more » « less